Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.863
Filtrar
1.
Biochem Biophys Res Commun ; 710: 149917, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38604071

RESUMO

Melanin-concentrating hormone (MCH) receptor 1 (MCHR1), a G protein-coupled receptor, is poised for interaction with its ligands on the plasma membrane. Analyses of MCHR1 knockout mice suggest that this receptor could be a therapeutic target for the treatment of appetite disorders, glucose metabolism, psychiatric disorders, and inflammation. Binding of MCH to MCHR1 initiates calcium signaling, which is subsequently attenuated through receptor internalization. However, the ultimate destiny of the receptor post-internalization remains unexplored. In this study, we report the extracellular secretion of MCHR1 via exosomes. The recruitment of MCHR1 to exosomes occurs subsequent to its internalization, which is induced by stimulation with the ligand MCH. Although a highly glycosylated form of MCHR1, potentially representing a mature form, is selectively recruited to exosomes, the MCHR1 transferred into other cells does not exhibit functionality. The truncation of MCHR1 at the C-terminus not only impairs its response to MCH but also hinders its recruitment to exosomes. These findings imply that functional MCHR1 could be secreted extracellularly via exosomes, a process that may represent a mechanism for the termination of intracellular MCHR1 signaling.


Assuntos
Exossomos , Hormônios Hipotalâmicos , Receptores do Hormônio Hipofisário , Humanos , Camundongos , Animais , Exossomos/metabolismo , Receptores do Hormônio Hipofisário/metabolismo , Transdução de Sinais , Camundongos Knockout , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Melaninas/metabolismo
2.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542347

RESUMO

Tyrosinase serves as the key enzyme in melanin biosynthesis, catalyzing the initial steps of the pathway, the hydroxylation of the amino acid L-tyrosine into L-3,4-dihydroxyphenylalanine (L-DOPA), followed by the subsequent oxidation of L-DOPA into dopaquinone (DQ), and it facilitates the conversion of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) into 5,6-indolequinone-2-carboxylic acid (IQCA) and 5,6-dihydroxy indole (DHI) into indolequinone (IQ). Despite its versatile substrate capabilities, the precise mechanism underlying tyrosinase's multi-substrate activity remains unclear. Previously, we expressed, purified, and characterized the recombinant intra-melanosomal domain of human tyrosinase (rTyr). Here, we demonstrate that rTyr mimics native human tyrosinase's catalytic activities in vitro and in silico. Molecular docking and molecular dynamics (MD) simulations, based on rTyr's homology model, reveal variable durability and binding preferences among tyrosinase substrates and products. Analysis of root mean square deviation (RMSD) highlights the significance of conserved residues (E203, K334, F347, and V377), which exhibit flexibility during the ligands' binding. Additionally, in silico analysis demonstrated that the OCA1B-related P406L mutation in tyrosinase substantially influences substrate binding, as evidenced by the decreased number of stable ligand conformations. This correlation underscores the mutation's impact on substrate docking, which aligns with the observed reduction in rTyr activity. Our study highlights how rTyr dynamically adjusts its structure to accommodate diverse substrates and suggests a way to modulate rTyr ligand plasticity.


Assuntos
Indolquinonas , Monofenol Mono-Oxigenase , Humanos , Monofenol Mono-Oxigenase/metabolismo , Melaninas/metabolismo , Levodopa , Simulação de Acoplamento Molecular , Ligantes
3.
Int J Biol Sci ; 20(5): 1688-1704, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481807

RESUMO

Background: Melanocortin 1 receptor (MC1R), a receptor of α-melanocyte-stimulating hormone (α-MSH), is exclusively present in melanocytes where α-MSH/MC1R stimulate melanin pigmentation through microphthalmia-associated transcription factor M (MITF-M). Toll-like receptor 4 (TLR4), a receptor of endotoxin lipopolysaccharide (LPS), is distributed in immune and other cell types including melanocytes where LPS/TLR4 activate transcriptional activity of nuclear factor (NF)-κB to express cytokines in innate immunity. LPS/TLR4 also up-regulate MITF-M-target melanogenic genes in melanocytes. Here, we propose a molecular target of antimelanogenic activity through elucidating inhibitory mechanism on α-MSH-induced melanogenic programs by benzimidazole-2-butanol (BI2B), an inhibitor of LPS/TLR4-activated transcriptional activity of NF-κB. Methods: Ultraviolet B (UV-B)-irradiated skins of HRM-2 hairless mice and α-MSH-activated melanocyte cultures were employed to examine melanogenic programs. Results: Topical treatment with BI2B ameliorated UV-B-irradiated skin hyperpigmentation in mice. BI2B suppressed the protein or mRNA levels of melanogenic markers, such as tyrosinase (TYR), MITF-M and proopiomelanocortin (POMC), in UV-B-exposed and pigmented skin tissues. Moreover, BI2B inhibited melanin pigmentation in UV-B-irradiated co-cultures of keratinocyte and melanocyte cells and that in α-MSH-activated melanocyte cultures. Mechanistically, BI2B inhibited the activation of cAMP response element-binding protein (CREB) in α-MSH-induced melanogenic programs and suppressed the expression of MITF-M at the promoter level. As a molecular target, BI2B primarily inhibited mitogen-activated protein kinase (MAPK) kinase 3 (MKK3)-catalyzed kinase activity on p38MAPK. Subsequently, BI2B interrupted downstream pathway of p38MAPK-mitogen and stress-activated protein kinase-1 (MSK1)-CREB-MITF-M, and suppressed MITF-M-target melanogenic genes, encoding enzymes TYR, TYR-related protein-1 (TRP-1) and dopachrome tautomerase (DCT) in melanin biosynthesis, and encoding proteins PMEL17 and Rab27A in the transfer of pigmented melanosomes to the overlaying keratinocytes in the skin. Conclusion: Targeting the MKK3-p38MAPK-MSK1-CREB-MITF-M pathway was suggested as a rationale to inhibit UV-B- or α-MSH-induced facultative melanogenesis and as a strategy to prevent acquired pigmentary disorders in the skin.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Hiperpigmentação , Animais , Camundongos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Melaninas/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Lipopolissacarídeos/toxicidade , Melanócitos/metabolismo , Hiperpigmentação/tratamento farmacológico , Hiperpigmentação/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Linhagem Celular Tumoral
4.
Proc Natl Acad Sci U S A ; 121(14): e2316303121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38551838

RESUMO

Photodynamic therapy (PDT) relies on a series of photophysical and photochemical reactions leading to cell death. While effective for various cancers, PDT has been less successful in treating pigmented melanoma due to high light absorption by melanin. Here, this limitation is addressed by 2-photon excitation of the photosensitizer (2p-PDT) using ~100 fs pulses of near-infrared laser light. A critical role of melanin in enabling rather than hindering 2p-PDT is elucidated using pigmented and non-pigmented murine melanoma clonal cell lines in vitro. The photocytotoxicities were compared between a clinical photosensitizer (Visudyne) and a porphyrin dimer (Oxdime) with ~600-fold higher σ2p value. Unexpectedly, while the 1p-PDT responses are similar in both cell lines, 2p activation is much more effective in killing pigmented than non-pigmented cells, suggesting a dominant role of melanin 2p-PDT. The potential for clinical translational is demonstrated in a conjunctival melanoma model in vivo, where complete eradication of small tumors was achieved. This work elucidates the melanin contribution in multi-photon PDT enabling significant advancement of light-based treatments that have previously been considered unsuitable in pigmented tumors.


Assuntos
Melanoma , Fotoquimioterapia , Neoplasias Cutâneas , Camundongos , Humanos , Animais , Fármacos Fotossensibilizantes/farmacologia , Melanoma/tratamento farmacológico , Melanoma/patologia , Melaninas/metabolismo , Neoplasias Cutâneas/tratamento farmacológico
5.
Biochem Biophys Res Commun ; 707: 149785, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38503150

RESUMO

Melanoma, originating from melanocytes, is a highly aggressive tumor. Tyrosinase is involved in melanin production in melanocytes, and its overexpression is noted in malignant melanomas. However, the role of tyrosinase in melanomas remains unclear. Therefore, this study aimed to evaluate the potential functions of tyrosinase in the human melanoma cell line A375. The expression level of tyrosinase in A375 cells was undetectable. However, markedly increased expression level was observed in the mouse melanoma cell line B16F10 and the human melanoma cell line WM266-4. Subsequently, we investigated the effect of ectopic tyrosinase expression on A375 cell motility using wound-healing assay. The overexpression of tyrosinase resulted in enhanced cell migration in both stable and transient tyrosinase expression cells. The levels of filamentous actin were decreased in tyrosinase-expressing A375 cells, suggesting that tyrosinase regulates cell motility by modulating actin polymerization. Histidine residues in tyrosinase are important for its enzymatic activity for synthesizing melanin. Substitution of these histidine residues to alanine residues mitigated the promotion of tyrosinase-induced A375 cell metastasis. Furthermore, melanin treatment enhanced A375 cell metastasis and phosphorylation of Cofilin. Thus, our findings suggest that tyrosinase increases the migration of A375 cells by regulating actin polymerization through its enzymatic activity.


Assuntos
Melaninas , Melanoma Experimental , Animais , Camundongos , Humanos , Melaninas/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Oxigenases de Função Mista/metabolismo , Actinas/metabolismo , Histidina/metabolismo , Melanoma Experimental/patologia , Linhagem Celular Tumoral , Melanócitos/metabolismo
6.
Int J Biol Macromol ; 264(Pt 2): 130663, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453104

RESUMO

Diabetic nephropathy (DN) is a serious complication in patients with diabetes, whose expansion process is closely related to oxidative stress caused by hyperglycemia. Herein, we report a chitosan-targeted dagliflozin-loaded melanin nanoparticle (CSMDNPs) that can selectively accumulate in injured kidneys, reduce blood glucose, and alleviate the oxidative stress-induced damage. CSMDNPs possess good dispersion and physiological stability, responsive release at acidic pH, and strong scavenging activities for various reactive oxygen and reactive nitrogen radicals. Moreover, in vitro experiments confirm that CSMDNPs have good biocompatibility, enable targeted uptake in NRK-52E renal tubular cells, and also well alleviate high glucose-induced oxidative stress. In the STZ-induced DN model, CSMDNPs exhibit high targeting distribution and retention in the damaged kidneys of DN mice according to photoacoustic imaging. At the end of CSMDNPs treatment, DN mice show a decrease in fasting blood glucose and a return to near-normal urine and blood indices. H&E, PAS, and masson pathological staining also indicates that CSMDNPs significantly inhibit the expansion of renal interstitium, glycogen, and collagen deposition, showing excellent therapeutic effects. In addition, melanin acts as both drug carrier and antioxidant without exogenous carrier introduction, exhibiting better biosafety and translational prospects.


Assuntos
Quitosana , Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Animais , Camundongos , Nefropatias Diabéticas/patologia , Glicemia/metabolismo , Melaninas/metabolismo , Quitosana/farmacologia , Rim , Estresse Oxidativo , Diabetes Mellitus/metabolismo
7.
Cell Commun Signal ; 22(1): 151, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408981

RESUMO

BACKGROUND: Coenzyme Q0 (CoQ0), a novel quinone derivative of Antrodia camphorata, has been utilized as a therapeutic agent (including antioxidant, anti-inflammatory, antiangiogenic, antiatherosclerotic, and anticancer agents); however, its depigmenting efficiency has yet to be studied. METHODS: We resolved the depigmenting efficiency of CoQ0 through autophagy induction in melanoma (B16F10) and melanin-feeding keratinocyte (HaCaT) cells and in vivo Zebrafish model. Then, MPLC/HPLC analysis, MTT assay, Western blotting, immunofluorescence staining, LC3 transfection, melanin formation, GFP-LC3 puncta, AVO formation, tyrosinase activity, and TEM were used. RESULTS: CoQ0-induced autophagy in B16F10 cells was shown by enhanced LC3-II accumulation, ATG7 expression, autophagosome GFP-LC3 puncta, and AVOs formation, and ATG4B downregulation, and Beclin-1/Bcl-2 dysregulation. In α-MSH-stimulated B16F10 cells, CoQ0 induced antimelanogenesis by suppressing CREB-MITF pathway, tyrosinase expression/activity, and melanin formation via autophagy. TEM data disclosed that CoQ0 increased melanosome-engulfing autophagosomes and autolysosomes in α-MSH-stimulated B16F10 cells. CoQ0-inhibited melanogenesis in α-MSH-stimulated B16F10 cells was reversed by pretreatment with the autophagy inhibitor 3-MA or silencing of LC3. Additionally, CoQ0-induced autophagy in HaCaT cells was revealed by enhanced LC3-II accumulation, autophagosome GFP-LC3 puncta and AVO formation, ATG4B downregulation, ATG5/ATG7 expression, and Beclin-1/Bcl-2 dysregulation. In melanin-feeding HaCaT cells, CoQ0 induced melanin degradation by suppressing melanosome gp100 and melanin formation via autophagy. TEM confirmed that CoQ0 increased melanosome-engulfing autophagosomes and autolysosomes in melanin-feeding HaCaT cells. Treatment with 3-MA reversed CoQ0-mediated melanin degradation in melanin-feeding HaCaT cells. In vivo study showed that CoQ0 suppressed endogenous body pigmentation by antimelanogenesis and melanin degradation through autophagy induction in a zebrafish model. CONCLUSIONS: Our results showed that CoQ0 exerted antimelanogenesis and melanin degradation by inducing autophagy. CoQ0 could be used in skin-whitening formulations as a topical cosmetic application.


Assuntos
Benzoquinonas , Melaninas , Polyporales , Ubiquinona , Animais , Humanos , Ubiquinona/farmacologia , Ubiquinona/metabolismo , Melaninas/metabolismo , Peixe-Zebra/metabolismo , Monofenol Mono-Oxigenase/metabolismo , alfa-MSH/metabolismo , Proteína Beclina-1/metabolismo , Melanócitos/metabolismo , Queratinócitos/metabolismo , Autofagia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linhagem Celular Tumoral
8.
J Ethnopharmacol ; 326: 117933, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38382653

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The roots and rhizomes of Bergenia purpurascens (Hook. f. et Thomson) Engl., was used as a sunscreen to protect against ultraviolet rays in Tibet of China historically, but its skin whitening constituents and pharmacological effects of this plant remained unknown. AIM OF THE STUDY: To investigate the anti-melanogenesis effect of B. purpurascens in vitro and in vivo, and then explore the preliminary mechanism. MATERIALS AND METHODS: An ultraviolet B (UVB)-induced skin injury model of mice was used to verify the ameliorative effect of B. purpurascens extract (BPE) on ultraviolet damage. Then, alpha-melanocyte stimulating hormone (α-MSH)-induced murine melanoma cell line (B16F10) melanin generation model was further adopted to approval the effects of BPE and its bioactive compound, cuscutin, in vitro. Moreover, α-MSH stimulated melanogenesis model in zebrafish was employed to confirm the anti-pigmentation effect of cuscutin. Then, proteins expressions associated with melanin production were observed using western blotting assay to explore preliminary mechanism. RESULTS: BPE inhibited UVB-induced mice injury and restored skin barrier function observably in vivo. BPE and cuscutin suppressed the overproduction of melanin in α-MSH induced B16F10 significantly, in which cuscutin exhibited better effect than well-known whitening agent α-arbutin at same 10 µg/mL concentration. Moreover, the pigmentation of zebrafish embryo was decreased by cuscutin. Finally, cuscutin showed significant downregulation of expressions of tyrosinase (TYR) and tyrosinase related protein-1 (TRP-1), TRP-2 and microphthalmia-associated transcription factor (MITF) in the melanogenic signaling pathway. CONCLUSION: B. purpurascens extract and its major bioactive constituent, cuscutin, showed potent anti-melanogenesis and skin-whitening effect by targeting TYR and TRP-2 proteins for the first time, which supported its traditional use.


Assuntos
Melanoma Experimental , Monofenol Mono-Oxigenase , Animais , Camundongos , Melaninas/metabolismo , Peixe-Zebra , alfa-MSH/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fator de Transcrição Associado à Microftalmia/metabolismo , Linhagem Celular Tumoral , Melanoma Experimental/tratamento farmacológico
9.
Molecules ; 29(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38398609

RESUMO

Polygonum cuspidatum (PC) extract has been listed in the "Catalog of Used Cosmetic Ingredients (2021 Edition)", which can inhibit melanogenesis, thus exerting a whitening effect, and has been widely used in cosmetics. However, there are currently no quality standards for PC extract used in cosmetics, and the bioactive components associated with anti-melanogenesis remain unclear. In view of this, the present study was the first to investigate the spectrum-effect relationship between fingerprints of PC extract and melanogenesis inhibition. Ten batches of PC extract fingerprints were established by HPLC. Pearson's correlation analysis, gray correlation analysis (GRA) and orthogonal partial least squares regression analysis (OPLSR) were used to screen out resveratrol, emodin and physcion as the main whitening active ingredients using the inhibition of tyrosinase in B16F10 cells as the pharmacological index. Then, the melanogenesis inhibitory effects of the above three components were verified by tyrosinase inhibition and a melanin content assay in B16F10 cells. The interaction between small molecules and proteins was investigated by the molecular docking method, and it was confirmed by quantitative real-time PCR (qRT-PCR) that resveratrol, emodin and physcion significantly down-regulated the transcript levels of melanogenesis-related factors. In conclusion, this study established a general model combining HPLC fingerprinting and melanogenesis inhibition and also analyzed the spectrum-effect relationship of PC extract, which provided theoretical support for the quality control of PC extract in whitening cosmetics.


Assuntos
Emodina , Emodina/análogos & derivados , Fallopia japonica , Melanoma Experimental , Animais , Monofenol Mono-Oxigenase/metabolismo , 60451 , Emodina/farmacologia , Simulação de Acoplamento Molecular , Resveratrol/farmacologia , Melaninas/metabolismo , Melanoma Experimental/metabolismo , Linhagem Celular Tumoral
10.
J Comp Neurol ; 532(2): e25588, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38335050

RESUMO

Melanin-concentrating hormone (MCH) cells in the hypothalamus regulate fundamental physiological functions like energy balance, sleep, and reproduction. This diversity may be ascribed to the neurochemical heterogeneity among MCH cells. One prominent subpopulation of MCH cells coexpresses cocaine- and amphetamine-regulated transcript (CART), and as MCH and CART can have opposing actions, MCH/CART+ and MCH/CART- cells may differentially modulate behavioral outcomes. However, it is not known if there are differences in the cellular properties underlying their functional differences; thus, we compared the neuroanatomical, electrophysiological, and morphological properties of MCH cells in male and female Mch-cre;L10-Egfp reporter mice. Half of MCH cells expressed CART and were most prominent in the medial hypothalamus. Whole-cell patch-clamp recordings revealed differences in their passive and active membrane properties in a sex-dependent manner. Female MCH/CART+ cells had lower input resistances, but male cells largely differed in their firing properties. All MCH cells increased firing when stimulated, but their firing frequency decreases with sustained stimulation. MCH/CART+ cells showed stronger spike rate adaptation than MCH/CART- cells. The kinetics of excitatory events at MCH cells also differed by cell type, as the rising rate of excitatory events was slower at MCH/CART+ cells. By reconstructing the dendritic arborization of our recorded cells, we found no sex differences, but male MCH/CART+ cells had less dendritic length and fewer branch points. Overall, distinctions in topographical division and cellular properties between MCH cells add to their heterogeneity and help elucidate their response to stimuli or effect on modulating their respective neural networks.


Assuntos
Cocaína , Hormônios Hipotalâmicos , Animais , Feminino , Masculino , Camundongos , Anfetaminas/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Melaninas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Hormônios Hipofisários/metabolismo
11.
Brain Struct Funct ; 229(4): 843-852, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38347222

RESUMO

Neuromelanin hypopigmentation within substantia nigra pars compacta (SNc) reflects the loss of pigmented neurons, which in turn contributes to the dysfunction of the nigrostriatal and striato-cortical pathways in Parkinson's disease (PD). Our study aims to investigate the relationships between SN degeneration manifested by neuromelanin reduction, functional connectivity (FC) among large-scale brain networks, and motor impairment in PD. This study included 68 idiopathic PD patients and 32 age-, sex- and education level-matched healthy controls who underwent neuromelanin-sensitive magnetic resonance imaging (MRI), functional MRI, and motor assessments. SN integrity was measured using the subregional contrast-to-noise ratio calculated from neuromelanin-sensitive MRI. Resting-state FC maps were obtained based on the independent component analysis. Subsequently, we performed partial correlation and mediation analyses in SN degeneration, network disruption, and motor impairment for PD patients. We found significantly decreased neuromelanin within SN and widely altered inter-network FCs, mainly involved in the basal ganglia (BG), sensorimotor and frontoparietal networks in PD. In addition, decreased neuromelanin content was negatively correlated with the dorsal sensorimotor network (dSMN)-medial visual network connection (P = 0.012) and dSMN-BG connection (P = 0.004). Importantly, the effect of SN neuromelanin hypopigmentation on motor symptom severity in PD is partially mediated by the increased connectivity strength between BG and dSMN (indirect effect = - 1.358, 95% CI: - 2.997, - 0.147). Our results advanced our understanding of the interactions between neuromelanin hypopigmentation in SN and altered FCs of functional networks in PD and suggested the potential of multimodal metrics for early diagnosis and monitoring the response to therapies.


Assuntos
Hipopigmentação , Transtornos Motores , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Substância Negra/metabolismo , Melaninas/metabolismo , Imageamento por Ressonância Magnética/métodos , Hipopigmentação/metabolismo , Hipopigmentação/patologia
12.
J Control Release ; 368: 1-14, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367863

RESUMO

Ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) is a serious kidney disease with high morbidity and mortality. However, there is no effective clinical treatment strategy. Herein, we developed a CD44 targeting nanoplatform based on HA-assembled melanin NPs covalently coupled with dexamethasone for I/R-induced AKI therapy by alleviating oxidative/inflammatory- induced damage. The constructed HA-MNP-DXM NPs had good dispersion, stability, and broad-spectrum scavenging capabilities against multiple reactive free radicals. Moreover, the NPs could be efficiently internalized and exhibited antioxidative, anti-inflammatory, and antiapoptotic effects in CoCl2-stimulated renal tubular epithelial NRK-52E cells. Furthermore, the I/R-induced AKI murine model was established to evaluate the in vivo performance of NPs. The results suggested the NPs could specifically target impaired kidneys upon intravenous administration according to NIR-II fluorescence imaging and showed high biosafety. Importantly, the NPs could improve renal function, alleviate oxidative stress and inflammatory reactions, inhibit apoptosis of tubular cells, and restore mitochondrial structure and function, exhibiting excellent therapeutic effects. Further therapeutic mechanism indicated the NPs maintained the cellular/mitochondrial redox balance by modulating the Nrf2 and HO-1 expression. Therefore, the NPs can be a promising therapeutic candidate for the treatment of I/R-induced AKI.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Camundongos , Animais , Melaninas/metabolismo , Rim/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Reperfusão , Isquemia , Apoptose
13.
Eur J Med Chem ; 266: 116136, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244374

RESUMO

Recently, 10 2-mercaptobenzo[d]imidazole (2-MBI) compounds (1-10) were synthesized. Although all 2-MBI compounds are tyrosinase inhibitors that inhibit mushroom tyrosinase at extremely low concentrations (IC50 values: 20-740 nM) and effectively inhibit the browning of apples, to our knowledge, no studies have determined whether 2-MBI compounds inhibit mammalian tyrosinase. Mammalian tyrosinase is different from mushroom tyrosinase in its distribution within the cell and has structural characteristics that are different from mushroom tyrosinase in amino acid sequence and in the presence of a quaternary structure. Thus, the effect of the 10 2-MBI compounds on mammalian tyrosinase activity was investigated in B16F10 cells. Six compounds (1-6) exhibited stronger intracellular tyrosinase inhibition than that of kojic acid and phenylthiourea (PTU), which are known to be the most potent tyrosinase inhibitors; their strong tyrosinase inhibitory activity robustly inhibited intracellular melanin production in B16F10 cells. None of the tested 2-MBI compounds exhibited appreciable cytotoxicity in HaCaT and B16F10 cells. To confirm the anti-melanogenic efficacy of the 2-MBI compounds in vivo, a zebrafish embryo model was used. At concentrations 100 times lower than kojic acid, most 2-MBI compounds demonstrated much stronger depigmentation efficacy than that of kojic acid, and three 2-MBI compounds (2-4) showed depigmentation activity similar to or more potent than that of PTU, resulting in nearly pigment-free zebrafish embryos. These results suggest that 2-MBI compounds may be potential therapeutic agents for hyperpigmentation-related disorders.


Assuntos
Agaricales , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Monofenol Mono-Oxigenase , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Benzimidazóis/farmacologia , Melaninas/metabolismo , Mamíferos/metabolismo
14.
J Neurochem ; 168(2): 128-141, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38178798

RESUMO

Abnormal metal distribution in vulnerable brain regions is involved in the pathogenesis of most neurodegenerative diseases, suggesting common molecular mechanisms of metal dyshomeostasis. This study aimed to compare the intra- and extra-neuronal metal content and the expression of proteins related to metal homeostasis in the substantia nigra (SN) from patients with Parkinson's disease (PD), multiple sclerosis (MS), and control subjects. Metal quantification was performed via ion-beam micro-analysis in neuromelanin-positive neurons and the surrounding tissue. For proteomic analysis, SN tissue lysates were analyzed on a nanoflow chromatography system hyphenated to a hybrid triple-quadrupole time-of-flight mass spectrometer. We found increased amounts of iron in neuromelanin-positive neurons and surrounding tissue in patients with PD and MS compared to controls (4- to 5-fold higher) that, however, also showed large inter-individual variations. Copper content was systematically lower (-2.4-fold) in neuromelanin-positive neurons of PD patients compared with controls, whereas it remained unchanged in MS. Protein-protein interaction (PPI) network analyses revealed clusters related to Fe and Cu homeostasis among PD-deregulated proteins. An enrichment for the term "metal homeostasis" was observed for MS-deregulated proteins. Important deregulated hub proteins included hemopexin and transferrin in PD, and calreticulin and ferredoxin reductase in MS. Our findings show that PD and MS share commonalities in terms of iron accumulation in the SN. Concomitant proteomics experiments revealed PPI networks related to metal homeostasis, substantiating the results of metal quantification.


Assuntos
Esclerose Múltipla , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Proteômica , Esclerose Múltipla/metabolismo , Substância Negra/patologia , Metais/metabolismo , Ferro/metabolismo , Melaninas/análise , Melaninas/metabolismo
15.
J Sci Food Agric ; 104(6): 3648-3653, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38224494

RESUMO

BACKGROUND: Tyrosinase, a copper-containing metalloenzyme with catalytic activity, is widely found in mammals. It is the key rate-limiting enzyme that catalyzes melanin synthesis. For humans, tyrosinase is beneficial to the darkening of eyes and hair. However, excessive deposition of melanin in the skin can lead to dull skin color and lead to pigmentation. Therefore, many skin-whitening compounds have been developed to decrease tyrosinase activity. This study aimed to identify a new tyrosinase inhibitory peptide through enzymatic hydrolysis, in vitro activity verification, molecular docking, and molecular dynamics (MD) simulation. RESULTS: A tripeptide Asp-Glu-Arg (DER) was identified, with a '-CDOCKER_Energy' value of 121.26 Kcal mol-1 . DER has effective tyrosinase inhibitory activity. Research shows that its half maximal inhibitory concentration value is 1.04 ± 0.01 mmol L-1 . In addition, DER binds to tyrosinase residues His85, His244, His259, and Asn260, which are key residues that drive the interaction between the peptide and tyrosinase. Finally, through MD simulation, the conformational changes and structural stability of the complexes were further explored to verify and supplement the results of molecular docking. CONCLUSION: This experiment shows that DER can effectively inhibit tyrosinase activity. His244, His259, His260, and Asn260 are the critical residues that drive the interaction between the peptide and tyrosinase, and hydrogen bonding is an important force. DER from Spirulina has the potential to develop functional products with tyrosinase inhibition. © 2024 Society of Chemical Industry.


Assuntos
Monofenol Mono-Oxigenase , Ficocianina , Spirulina , Humanos , Animais , Simulação de Acoplamento Molecular , Spirulina/metabolismo , Melaninas/metabolismo , Inibidores Enzimáticos/química , Peptídeos , Mamíferos/metabolismo
16.
Acta Neuropathol ; 147(1): 25, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280071

RESUMO

We and others have shown that [18F]-Flortaucipir, the most validated tau PET tracer thus far, binds with strong affinity to tau aggregates in Alzheimer's (AD) but has relatively low affinity for tau aggregates in non-AD tauopathies and exhibits off-target binding to neuromelanin- and melanin-containing cells, and to hemorrhages. Several second-generation tau tracers have been subsequently developed. [18F]-MK-6240 and [18F]-PI-2620 are the two that have garnered most attention. Our recent data indicated that the binding pattern of [18F]-MK-6240 closely parallels that of [18F]-Flortaucipir. The present study aimed at the direct comparison of the autoradiographic binding properties and off-target profile of [18F]-Flortaucipir, [18F]-MK-6240 and [18F]-PI-2620 in human tissue specimens, and their potential binding to monoamine oxidases (MAO). Phosphor-screen and high resolution autoradiographic patterns of the three tracers were studied in the same postmortem tissue material from AD and non-AD tauopathies, cerebral amyloid angiopathy, synucleopathies, transactive response DNA-binding protein 43 (TDP-43)-frontotemporal lobe degeneration and controls. Our results show that the three tracers show nearly identical autoradiographic binding profiles. They all strongly bind to neurofibrillary tangles in AD but do not seem to bind to a significant extent to tau aggregates in non-AD tauopathies pointing to their limited utility for the in vivo detection of non-AD tau lesions. None of them binds to lesions containing ß-amyloid, α-synuclein or TDP-43 but they all show strong off-target binding to neuromelanin and melanin-containing cells, as well as weaker binding to areas of hemorrhage. The autoradiographic binding signals of the three tracers are only weakly displaced by competing concentrations of selective MAO-B inhibitor deprenyl but not by MAO-A inhibitor clorgyline suggesting that MAO enzymes do not appear to be a significant binding target of any of them. These findings provide relevant insights for the correct interpretation of the in vivo behavior of these three tau PET tracers.


Assuntos
Doença de Alzheimer , Carbolinas , Isoquinolinas , Doenças Neurodegenerativas , Piridinas , Tauopatias , Humanos , Doenças Neurodegenerativas/patologia , Melaninas/metabolismo , Encéfalo/patologia , Tauopatias/patologia , Monoaminoxidase/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas tau/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Doença de Alzheimer/patologia
17.
Chem Res Toxicol ; 37(2): 274-284, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38271289

RESUMO

Cutaneous pigmentation is an important phenotypic trait whose regulation, despite recent advances, has yet to be completely elucidated. Melanogenesis, a physiological process of melanin production, is imperative for organism survival as it provides protection against the environmental insults that majorly involve sunlight-induced skin photodamage. However, immoderate melanin synthesis can cause pigmentation disorders associated with a psychosocial impact. In this study, the hypopigmentation effect of (2-methylbutyryl)shikonin, a natural product present in the root extract of Lithospermum erythrorhizon, and the underlying mechanisms responsible for the inhibition of melanin synthesis in α-MSH-stimulated B16F10 cells and C57BL/6J mice was studied. Non-cytotoxic concentrations of (2-methylbutyryl)shikonin significantly repressed cellular tyrosinase activity and melanin synthesis in both in vitro and in vivo models (C57BL/6J mice). (2-Methylbutyryl)shikonin remarkably abolished the protein expression of MITF, tyrosinase, tyrosinase-related protein 1, and tyrosinase-related protein 2, thereby blocking the production of pigment melanin via modulating the phosphorylation status of MAPK proteins, viz., ERK1/2 and p38. In addition, specific inhibition of ERK1/2 attenuated the inhibitory effects of (2-methylbutyryl)shikonin on melanin synthesis, whereas selective inhibition of p38 augmented the inhibitory effect of BSHK on melanin synthesis. Moreover, topical application of (2-methylbutyryl)shikonin on C57BL/6J mouse tails remarkably induced tail depigmentation. In conclusion, with these findings, we, for the first time, report the hypopigmentation effect of (2-methylbutyryl)shikonin via inhibition of cellular tyrosinase enzyme activity, subsequently ameliorating the melanin production, thereby indicating that (2-methylbutyryl)shikonin is a potential natural therapy for hyperpigmentation disorders.


Assuntos
Hipopigmentação , Melanoma Experimental , Naftoquinonas , Animais , Camundongos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Regulação para Baixo , Fator de Transcrição Associado à Microftalmia/metabolismo , Fator de Transcrição Associado à Microftalmia/farmacologia , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Transdução de Sinais , 60451 , Melaninas/metabolismo , Sistema de Sinalização das MAP Quinases , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Melanoma Experimental/tratamento farmacológico
18.
Appl Microbiol Biotechnol ; 108(1): 133, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229332

RESUMO

Transcription factor Cmr1 (Colletotrichum melanin regulation 1) and its homologs in several plant fungal pathogens are the regulators of the 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis pathway and have evolved functional diversification in morphology and pathogenicity. The fungal genus Alternaria comprises the group of "black fungi" that are rich in DHN-melanin in the primary cell wall and septa of the conidia. Some Alternaria species cause many economically important plant diseases worldwide. However, the evolution and function of Cmr1 homologs in Alternaria remain poorly understood. Here, we identified a total of forty-two Cmr1 homologs from forty-two Alternaria spp. and all contained one additional diverse fungal specific transcription factor motif. Phylogenetic analysis indicated the division of these homologs into five major clades and three branches. Dated phylogeny showed the A and D clades diverged latest and earliest, respectively. Molecular evolutionary analyses revealed that three amino acid sites of Cmr1 homologs in Alternaria were the targets of positive selection. Asmr1, the homolog of Cmr1 in the potato early blight pathogen, Alternaria solani was amplified and displayed the sequence conservation at the amino acid level in different A. solani isolates. Asmr1 was further confirmed to have the transcriptional activation activity and was upregulated during the early stage of potato infection. Deletion of asmr1 led to the decreased melanin content and pathogenicity, deformed conidial morphology, and responses to cell wall and fungicide stresses in A. solani. These results suggest positive selection and functional divergence have played a role in the evolution of Cmr1 homologs in Alternaria. KEY POINTS: • Cmr1 homologs were under positive selection in Alternaria species • Asmr1 is a functional transcription factor, involved in spore development, melanin biosynthesis, pathogenicity, and responses to cell wall and fungicide stresses in A. solani • Cmr1 might be used as a potential taxonomic marker of the genus Alternaria.


Assuntos
Fungicidas Industriais , Naftóis , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Alternaria/genética , Alternaria/metabolismo , Melaninas/metabolismo , Fungicidas Industriais/metabolismo , Filogenia
19.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-38287676

RESUMO

Oculocutaneous albinism (OCA) is characterized by reduced melanin biosynthesis affecting the retina, thus impairing visual function. The disease pathology of OCA is poorly understood at the cellular level due to unavailability of suitable biological model systems. This study aimed to develop a disease-specific in vitro model for OCA type 1A, the most severe form caused by TYR (tyrosinase) gene mutations, using retinal pigment epithelium (RPE) differentiated from patient-derived human-induced pluripotent stem cells (hiPSCs). A comparative study between healthy and OCA1A RPE cells revealed that while healthy RPE cells exhibited timely onest of pigmentation during differentiation, OCA1A RPE cells failed to pigment even after an extended culture period. This observation was validated by ultrastructural studies using electron microscopy, hinting at melanosome-specific defects. Immunocytochemistry demonstrated abnormal expression patterns of melanogenesis-specific protein markers in OCA1A RPE cells, indicating reduced or absence of melanin synthesis. Next, a quantitative assay was performed to confirm the absence of melanin production in OCA1A RPE cells. Tyrosinase assay showed no activity in OCA1A compared with healthy RPE, suggesting non-functionality of TYR, further corroborated by western blot analysis showing complete absence of the protein. Gene expression by RNA sequencing of healthy and OCA1A RPE cells uncovered differential gene expression associated with lens development, visual perception, transmembrane transporter activity, and key signaling pathways. This disease-in-a-dish model of OCA1A provides an excellent platform to understand disease mechanism, identify potential therapeutic targets, and facilitate gene therapy or gene correction.


Assuntos
Albinismo Oculocutâneo , Células-Tronco Pluripotentes Induzidas , Humanos , Melaninas/genética , Melaninas/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Albinismo Oculocutâneo/genética , Albinismo Oculocutâneo/terapia
20.
Eur J Med Chem ; 266: 116165, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262119

RESUMO

Melanogenesis inhibition constitutes a privileged therapeutic solution to treat skin hyperpigmentation, a major dermatological concern associated with the overproduction of melanin by human tyrosinase (hsTYR). Despite the existence of many well-known TYR (tyrosinase) inhibitors commercialized in skin formulations, their hsTYR-inhibition efficacy remains poor since most of them were investigated over mushroom tyrosinase (abTYR), a model with low homology relative to hsTYR. Considering the need for new potent hsTYR inhibitors, we designed and synthesized a series of indanones starting from 4-hydroxy compound 1a, one of the two most active derivatives reported to date against the human enzyme, together with marketed thiamidol. We observed that analogues featuring 4-amino and 4-amido-2',4'-dihydroxyindanone motifs showed two-to ten-fold increase in activity over human melanoma MNT-1 cell lysates, and a ten-fold improvement in a 4-days whole-cell experiment, compared to parent analogue 1a. Molecular docking investigation was performed for the most promising 4-amido derivatives and suggested a plausible interaction pattern with the second coordination sphere of hsTYR, notably through hydrogen bonding with Glu203, confirming their impact in the binding mode with hsTYR active site.


Assuntos
Melanoma , Monofenol Mono-Oxigenase , Humanos , Melanoma/tratamento farmacológico , Melaninas/metabolismo , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA